
CppCon	
 2014	

C++	
 on	
 Mars

Ar#st’s	
 Concept.	
 	
 NASA/JPL-­‐Caltech	
 	

Incorpora1ng	
 C++	
 into	
 Mars	

Rover	
 Flight	
 So<ware	
 	

Mark	
 Maimone	

Jet	
 Propulsion	
 Laboratory	

California	
 Ins1tute	
 of	
 Technology	

CppCon	
 2014	

A Journey Through Time
and Space

Imagine …

NASA/JPL-­‐Caltech	

CppCon	
 2014	

A Journey Through Time
and Space

Imagine …

Y2K

NASA/JPL-­‐Caltech	

CppCon	
 2014	

A Journey Through Time
and Space

Imagine …

Y2K

A little Embedded Systems Project

NASA/JPL-­‐Caltech	

CppCon	
 2014	

A Journey Through Time
and Space

Imagine …

Y2K

A little Embedded Systems Project

Implementing the latest in Advanced Robotic Autonomy

NASA/JPL-­‐Caltech	

CppCon	
 2014	

A Journey Through Time
and Space

Imagine …

Y2K

A little Embedded Systems Project

Implementing the latest in Advanced Robotic Autonomy

On Mars.

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Meet	
 NASA’s	
 Mars	
 Rovers	

NASA/JPL	
 -­‐	
 Caltech/Cornell	

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Because of the distance between Earth and
Mars, we can’t drive a rover in real time.

It takes between 4 and 22 minutes each way for a signal to
travel between the two planets.

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Also, Logistics

The Deep Space
Network is a shared
resource for dozens of
missions.

We often only get one
uplink and few downlink
windows each day

CppCon	
 2014	

A Day’s Plan Might Include Driving,
Using the Arm, or Remote Science

NASA/JPL-Caltech

CppCon	
 2014	

Mars Rovers carry out their activities
then send data to the orbiters,

whose larger antennas relay it to Earth.

It takes less energy and a smaller antenna to send data 200 miles
(322 km) up to an orbiter, rather than millions of miles to Earth,

though direct contact is available.

Ar#st’s	
 Concept.	
 	
 NASA/JPL-­‐Caltech	
 	
 Ar#st’s	
 Concept.	
 	
 NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

So How Do You Build One?

Start with robust, fault tolerant hardware and software
designs

Squeeze in as much autonomous capability as you can get
approved

 Foreshadowing: C++!

Test as you fly. Test again. Test. Test. Test.

Athena	
 NASA/JPL-Caltech

CppCon	
 2014	

Software Resources
MER	
 MSL	

Radia1on-­‐hardened	
 CPU	
 RAD6000	
 (PowerPC)	
 RAD750	
 (PowerPC)	

Clock	
 Speed	
 20	
 MHz	
 133	
 MHz	

On-­‐board	
 RAM	
 128	
 Mbytes	
 128	
 Mbytes	

Real	
 Time	
 Opera1ng	
 Sys	
 VxWorks	
 5.3.1	
 VxWorks	
 6.7	

Addressable	
 Code	
 RAM	
 32	
 Mbytes	
 32	
 Mbytes	

FSW	
 +	
 RTOS	
 Code	
 Size	
 10	
 Mbytes	
 21	
 Mbytes	

Addi1onal	
 RAM	
 n/a	
 512	
 Mbytes	
 SDRAM	

(half	
 for	
 RAMFS)	

Per-­‐Task	
 Memory	
 access	
 Shared	
 Memory	
 Shared	
 Memory	

C/Embedded	
 C++	

compiler	

Green	
 Hills	
 MULTI	
 3.5	
 GCC	
 4.1.2	

CppCon	
 2014	

Mars Rover FSW Modules

MER and MSL each have over 100 individual source code
modules

 Each module had a single FSW developer as its owner

Modules typically communicate by passing messages
through Message Queues assigned to each task

 Very minimal use of semaphore locks, shared memory

Learn more:
“Curiosity’s FSW Architecture: A Platform for Mobility and
Science”, Dr. Kathryn Weiss, NASA JPL, video from 2012
Flight Software Workshop

CppCon	
 2014	

MER Mobility FSW Modules

NASA/JPL-­‐Caltech	
 	

Surface navigation is the most complex module, comprising 21% of MER
object code, 10% of MSL. How to manage its complexity?

CppCon	
 2014	

Use C++ !

Most of the onboard autonomous driving
software on MER and MSL is written in C++

Dense Stereo Vision
Autonomous Terrain Assessment
Local and Global Waypoint Planning
Multi-sol Driving
Visual Odometry
Slip Checks
Keepout Zone Prediction

CppCon	
 2014	

Why C++?

Throughout the 1990’s, JPL researchers used C++ to
develop high level autonomous behaviors like stereo
vision, map building, path planning and visual odometry.

C++ class abstraction and encapsulation enabled rapid
development and testing among multiple projects and
developers . Many capabilities were field-tested and field-
proven over years of testing.

Urbie	

Athena	
 Rocky	
 7	
 NASA/JPL-Caltech NASA/JPL-Caltech

NASA/JPL-Caltech

CppCon	
 2014	

Why was C++ So Late to
Space?

Before MER development began in 2000, C++ code had not
flown on any JPL Mars mission.

Spaceflight projects always want to minimize risk, so
prefer software environments with flight heritage.

So we weighed the risk of using the new environment
against the risk of rewriting a mature and field tested
existing C++ codebase.

 C++ won!

CppCon	
 2014	

What Does our C++ Code
Do?

Here is an overview of the Mars Rover C++ software.

Most of it is based around the automatic interpretation of
stereo pairs of images taken by the rover as it moves
across the surface of Mars.

Next: cameras, Autonomous driving, and Visual Odometry

Learn more: Leave	
 the	
 Driving	
 to	
 Autonav,	
 Curiosity	
 Rover	

Report,	
 Sept.	
 19,	
 2013	

Two	
 Years	
 of	
 Visual	
 Odometry	
 on	
 the	
 Mars	
 Explora@on	
 Rovers,	

Maimone,	
 Cheng,	
 Ma>hies,	
 JFR	
 Vol	
 24	
 no	
 3,	
 3/2007,	
 pp	
 169-­‐186.	

The	
 Mars	
 Explora@on	
 Rover	
 Surface	
 Mobility	
 Flight	
 SoFware:	

Driving	
 Ambi@on,	
 Biesidecki,	
 Maimone,	
 IEEE	
 Aerospace	
 3/2006.	

CppCon	
 2014	

Curiosity has 17 cameras

Right	

Navcams	
 (2)	

Right	
 Mastcam	

(100mm)	

Le<	

Navcams	
 (2)	

ChemCam	
 RMI	

Le<	
 Mastcam	

(34	
 mm)	
 MAHLI	

MARDI	

Right	
 and	
 Le<	

Front	

Hazcams	
 (2	

pair)	

Right	
 and	
 Le<	

Rear	
 Hazcams	

(2	
 pair)	

Ar#st’s	
 Concept.	
 	
 NASA/JPL-­‐Caltech	
 	

Hazcams and Navcams are tied into the auto-nav software.

The hazard avoidance cameras give a 120o
wide angle view of the area near the rover.
Front cameras have 16cm baseline, rear

cameras have 10cm baseline.

NASA/JPL-­‐Caltech	
 	
 NASA/JPL-Caltech/MSSS

The 45o navigation cameras are almost
7 feet off the ground with 42cm baseline,

providing good views over nearby
obstacles or hills and into ditches.

NASA/JPL-­‐Caltech	
 	
 NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Human Rover Drivers Decide How Much
Autonomy is Desired Based on Terrain

and Available Resources

Directed driving Visual odometry, or
Slip Check + “Auto”

Auto-navigation;
Geometric Hazard
Detection and
Avoidance

NASA/JPL-­‐Caltech	
 	
 NASA/JPL-­‐Caltech	
 	
 NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Using visual odometry, the rover constantly
compares pairs of images of nearby terrain

to calculate its position.

Unlike terrestrial robots, Curiosity drives as far as possible between VO images

NASA/JPL-­‐CaltecS	

NASA/JPL-­‐Caltech	
 NASA/JPL-­‐Caltech	

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Rover Navigation 101

NASA/JPL-­‐Caltech	

Learn	
 More:	
 	
 Rover	
 Naviga@on	
 101	

CppCon	
 2014	

Auto-nav extends directed drives into previously unseen terrain

To drive around hazards, the rover stops
every 0.5-1.5 meters, takes 4 sets of
images, evaluates hazards, and then

chooses where to drive.

Ar#st’s	
 Concept.	
 	
 NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Animation of Curiosity’s actual Sol 372
drive over a picture of her tracks

Slightly	
 more	
 rugged	
 terrain	

Finish!	

Start	

NASA/JPL-Caltech

CppCon	
 2014	

Curiosity’s map and tracks show this
decision to turn was based on her

evaluation of the terrain.

Curiosity	
 avoids	

the	
 darker	
 orange	

in	
 favor	
 of	
 yellow	

The	

resul1ng	

turn	

NASA/JPL-Caltech

NASA/JPL-Caltech

CppCon	
 2014	

The rover reduces a stereo point cloud into
a configuration space, labeling unsafe areas

red and safe areas green.

Yellow means drive carefully, just like on Earth.

Rover

Engineers
have told
the rover
to stay

within the
white area.

Rover

NASA/JPL-Caltech

CppCon	
 2014	

MER FSW Updated in 2006

R9.2 of the MER FSW included several then-new
technologies, several using C++

Field D* - Optimal Long Range Drive Planning, now
standard in MSL

IDD Autoplace (Go and Touch) – Place the arm on a target
autonomously after driving toward it

Visual Target Tracking – Fast tracking of a nearby terrain
feature (new version now being checked out on MSL)

Learn more: Overview of the Mars Exploration Rovers’
Autonomous Mobility and Vision Capabilities, Maimone,
Leger, Biesiadecki, ICRA 2007.

CppCon	
 2014	

Field D* Optimal Global Path Planning

Overhead Imagery	

 Field D* Cost Map	

CppCon	
 2014	

IDD (Arm) Auto-place Sol A-1068

Rover Exclusion Zones!

High resolution terrain model
processed onboard!

Potential Placement targets!

CppCon	
 2014	

MER Visual Target Tracking (Sol B-992)

Seed Image!

7 images and nearly 90o later…!

CppCon	
 2014	

Initial Concerns about C++

Historic arguments against using C++ in flight included:

Exceptions: Too much uncertainty, difficult to validate all
possible control paths

Templates: Easy to cause code bloat

Iostream: Console output deprecated when your console
is 200 million miles away

Multiple inheritance: little experience in our environment

Operator overloading: confusing for other developers

Dynamic allocation: worries about running out of system
heap RAM, uncertainty of timing during garbage collection

CppCon	
 2014	

Using Embedded C++

So we limited our code to “Embedded C++” constructs

Exceptions: none

Templates: none

Iostream: none

Multiple inheritance: none

Operator overloading: almost none (only “new” and
“delete”).

Dynamic Allocation: Guarantee no system heap corruption
using a dedicated memory pool and Placement New.

CppCon	
 2014	

Placement New

Recall that our O/S uses shared memory across all tasks;
every task shares the same system heap for dynamic
allocations.

So how to guarantee that our new C++ code would not
interfere with spacecraft operations?

Overload “new” and “delete” operators to invoke our own
memory allocator, never calling the O/S supplied functions

Never touch the system heap: use Placement New syntax
to “place” new allocations into explicit RAM addresses
inside our separate memory pools.

CppCon	
 2014	

Memory Allocator

We developed our own Memory Manager

Guarantees graceful access to defined memory pools
 Well-defined behavior for out of memory conditions

Supports multiple pools in different areas of RAM

Provides diagnostics
 Optional display of each new and delete operation
 Maintains free space map available for documentation

Same allocator used for VxWorks and unix development
 Detailed memory tests could run without full testbed

No garbage collector; leaks must be eliminated (enforced
during unit tests)

CppCon	
 2014	

Using the Memory Allocator

Code practices initially dictated that dynamic allocation be
eliminated, or restricted to one-time-only during the boot
up phase

 But this restriction was waived once shown safe

During autonomy development on Unix and unit testing in
VxWorks, we use the detailed diagnostics to trace every
allocation to prove no leaks.

During operations, we dump the free map after every
complex autonomy step to prove no leaks, or provide data
if one occurs.

CppCon	
 2014	

Running Tests

Unit tests: Developers add Unit tests to ensure changes do
not break existing capabilities, enable Code Coverage
analysis, and run memory checkers (Valgrind, purify).

Static Analysis: Runs a suite of local and commercial
tools

Validation & Verification: A separate test team takes
delivered code and runs it through its paces in the various
testbeds

Always try to keep tests as realistic as feasible: Test As
You Fly.

Learn more: Mars Code, by Gerard Holtzmann, CACM Vol
57 No 2, pp 64-73, Feb 2014.

CppCon	
 2014	

MER FSW Simulation
Environments

MER team used a variety of testbeds for development

Surface Navigation Unix binary: Just surface navigation
library with a dedicated test interface.

Avionics Simulators: dedicated PowerPC boards with
software emulation of motors, sensors, filesystems

Testbeds: Flight-like PowerPC boards with flash,
EEPROM, and sometimes other hardware in the loop

Surface System Testbed: Full rover Engineering model
with sensors, mobility, manipulation, mast

CppCon	
 2014	

MER Engineering Model

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Indoor Testbed: In-Situ Lab

NASA/JPL-­‐Caltech	
 	

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

MSL FSW Simulation
Environments

Surface Navigation Unix binary

Navsim Unix binary: Software emulation of just mobility
spacecraft commands with a 3D terrain renderer

Surface Simulation unix binary (SSIM): Arm and turret
command simulation and visualization

Workstation Test Sets (WSTS): VxSim software emulation
of flight software, motors, sensors, filesystem, 3D terrain

Testbeds: Flight-like PowerPC boards with flash,
EEPROM, and sometimes other hardware in the loop

Vehicle System Testbed (VSTB): Full rover Engineering
model with sensors, mobility, manipulation, mast

CppCon	
 2014	

MSL Engineering Model

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

VSTB Driving: 1

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

VSTB Driving: 2

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Curiosity Odometry Per Sol

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Curiosity Cumulative Odometry

NASA/JPL-­‐Caltech	

CppCon	
 2014	

49

C++ is pervasive on Earth

Much of the software used to plan Mars rover drives on Earth is also
written in C++

NASA/JPL-Caltech

CppCon	
 2014	

C++ Annotates Drive Data

Automated graphical annotation of downlink data is done in C++, then
automatically sent to the team’s phones

	
 	
 	

	
 	
 	
 	
 	
 	

NASA/JPL-Caltech

CppCon	
 2014	

C++ on Other Spacecraft

Earth Observing 1 –
Autonomous Sciencecraft
Experiment since 2005

ISS-RapidScat – ocean wind
velocity measurement

Aquarius – Sea Surface
Salinity

Grace Follow-On – tracking
water movement

Cubesats

NASA/JPL-­‐Caltech/JSC	
 	

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

The Future of C++ in Space
“With modern tools, C++ can be cheaper to validate than C”
– Rus Knight, Casper Cog E on EO1

MER and MSL paved the way for the 2020 Rover, which will
inherit MSL’s C++ code base

EO1 (Remote Agent, Aspen) and Aquarius already take
advantage of more than just Embedded C++ constructs.

James Webb telescope is using C++ in the IBM Rational
framework

Grace FO and other projects are advocating for tighter
integration with UML code parsers and generators

Learn more: OO Techniques Applied to a Real-time,
Embedded, Spaceborne Application, Murray, Shahabuddin,
OOPSLA 2006

NASA/JPL-­‐Caltech/JSC	
 	

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	

Acknowledgements

Thanks to multiple JPLers whose knowledge and opinions
contributed greatly to this presentation, including but not
limited to: Jeff Biesiadecki, Tim Canham, Dan Dvorak,
Gerard Holzmann, Rus Knight, Mike McHenry, Issa Nesnas,
Glenn Reeves, Steve Scandore, and especially Alex Murray
(publish your white paper, Alex!).

The work described in this talk was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
and was sponsored by the National Aeronautics and Space
Administration (NASA).

(c) 2014 California Institute of Technology. Government
sponsorship acknowledged.

NASA/JPL-­‐Caltech/JSC	
 	

NASA/JPL-­‐Caltech	
 	

CppCon	
 2014	
 NASA/JPL-­‐Caltech/MSSS	

CppCon	
 2014	

Backup Slides

CppCon	
 2014	

Planning	
 Mul1ple	
 Arm	
 Ac1vi1es:	
 Sol	
 612	

NASA/JPL-­‐Caltech	

CppCon	
 2014	

Sol 122: VO vs IMU
•  By convention, any VO updates that measure more attitude

change than the IMU does will be rejected; we tend to trust
the IMU, especially over short distances

•  On Sols 122-124, Curiosity drove using Visual Odometry (VO),
but several VO updates were rejected!

•  Turned out that VO was right! A parameter caused the IMU
gyro-based attitude estimator to reject changes under high
accelerations

•  No more issues since updating that parameter

•  VO updates have failed to converge just 13 times out of 3855
attempts as of sol 650, and only twice for actual lack of
texture; 99.66% success rate!

